Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation.

Identifieur interne : 001682 ( Main/Exploration ); précédent : 001681; suivant : 001683

Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation.

Auteurs : Jennifer J. Tate [États-Unis] ; Terrance G. Cooper

Source :

RBID : pubmed:17439949

Descripteurs français

English descriptors

Abstract

Intracellular localization of Saccharomyces cerevisiae GATA family transcription activator, Gln3, is used as a downstream readout of rapamycin-inhibited Tor1,2 control of Tap42 and Sit4 activities. Gln3 is cytoplasmic in cells provided with repressive nitrogen sources such as glutamine and is nuclear in cells growing with a derepressive nitrogen source such as proline or those treated with rapamycin or methionine sulfoximine (Msx). Although gross Gln3-Myc13 phosphorylation levels in wild type cells do not correlate with nitrogen source-determined intracellular Gln3-Myc13 localization, the phosphorylation levels are markedly influenced by several environmental perturbations. Msx treatment increases Snf1-independent Gln3-Myc13 phosphorylation, whereas carbon starvation increases both Snf1-dependent and -independent Gln3-Myc13 phosphorylation. Here we demonstrate that a broad spectrum of environmental stresses (temperature, osmotic, and oxidative) increase Gln3-Myc13 phosphorylation. In parallel, these stresses elicit rapid (<5 min for NaCl) Gln3-Myc13 relocalization from the nucleus to the cytoplasm. The response of Gln3-Myc13 localization to stressful conditions can completely overwhelm its response to nitrogen source quality or inhibitor-generated disruption of the Tor1,2 signal transduction pathway. Adding NaCl to cells cultured under conditions in which Gln3-Myc13 is normally nuclear, i.e. proline-grown, nitrogen-starved, Msx-, caffeine-, and rapamycin-treated wild type cells, or ure2Delta cells, results in its prompt relocalization to the cytoplasm. Together these data identify a major new level of regulation to which Gln3 responds, and adds a new dimension to mechanistic studies of the regulation of this transcription factor.

DOI: 10.1074/jbc.M609550200
PubMed: 17439949
PubMed Central: PMC2269007


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation.</title>
<author>
<name sortKey="Tate, Jennifer J" sort="Tate, Jennifer J" uniqKey="Tate J" first="Jennifer J" last="Tate">Jennifer J. Tate</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163</wicri:regionArea>
<wicri:noRegion>Tennessee 38163</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cooper, Terrance G" sort="Cooper, Terrance G" uniqKey="Cooper T" first="Terrance G" last="Cooper">Terrance G. Cooper</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17439949</idno>
<idno type="pmid">17439949</idno>
<idno type="doi">10.1074/jbc.M609550200</idno>
<idno type="pmc">PMC2269007</idno>
<idno type="wicri:Area/Main/Corpus">001711</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001711</idno>
<idno type="wicri:Area/Main/Curation">001711</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001711</idno>
<idno type="wicri:Area/Main/Exploration">001711</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation.</title>
<author>
<name sortKey="Tate, Jennifer J" sort="Tate, Jennifer J" uniqKey="Tate J" first="Jennifer J" last="Tate">Jennifer J. Tate</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163</wicri:regionArea>
<wicri:noRegion>Tennessee 38163</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cooper, Terrance G" sort="Cooper, Terrance G" uniqKey="Cooper T" first="Terrance G" last="Cooper">Terrance G. Cooper</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (metabolism)</term>
<term>Cell Nucleus (metabolism)</term>
<term>Cytoplasm (metabolism)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Glutamine (metabolism)</term>
<term>Methionine Sulfoximine (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Proline (metabolism)</term>
<term>Repressor Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
<term>Sodium Chloride (pharmacology)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (métabolisme)</term>
<term>Carbone (métabolisme)</term>
<term>Chlorure de sodium (pharmacologie)</term>
<term>Cytoplasme (métabolisme)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Glutamine (métabolisme)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Méthionine sulfoximine (métabolisme)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Phosphorylation (MeSH)</term>
<term>Proline (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de répression (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Glutamine</term>
<term>Methionine Sulfoximine</term>
<term>Nitrogen</term>
<term>Proline</term>
<term>Repressor Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Cytoplasm</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Carbone</term>
<term>Cytoplasme</term>
<term>Facteurs de transcription</term>
<term>Glutamine</term>
<term>Méthionine sulfoximine</term>
<term>Noyau de la cellule</term>
<term>Proline</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de répression</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Chlorure de sodium</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Models, Biological</term>
<term>Phosphorylation</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Modèles biologiques</term>
<term>Phosphorylation</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Intracellular localization of Saccharomyces cerevisiae GATA family transcription activator, Gln3, is used as a downstream readout of rapamycin-inhibited Tor1,2 control of Tap42 and Sit4 activities. Gln3 is cytoplasmic in cells provided with repressive nitrogen sources such as glutamine and is nuclear in cells growing with a derepressive nitrogen source such as proline or those treated with rapamycin or methionine sulfoximine (Msx). Although gross Gln3-Myc13 phosphorylation levels in wild type cells do not correlate with nitrogen source-determined intracellular Gln3-Myc13 localization, the phosphorylation levels are markedly influenced by several environmental perturbations. Msx treatment increases Snf1-independent Gln3-Myc13 phosphorylation, whereas carbon starvation increases both Snf1-dependent and -independent Gln3-Myc13 phosphorylation. Here we demonstrate that a broad spectrum of environmental stresses (temperature, osmotic, and oxidative) increase Gln3-Myc13 phosphorylation. In parallel, these stresses elicit rapid (<5 min for NaCl) Gln3-Myc13 relocalization from the nucleus to the cytoplasm. The response of Gln3-Myc13 localization to stressful conditions can completely overwhelm its response to nitrogen source quality or inhibitor-generated disruption of the Tor1,2 signal transduction pathway. Adding NaCl to cells cultured under conditions in which Gln3-Myc13 is normally nuclear, i.e. proline-grown, nitrogen-starved, Msx-, caffeine-, and rapamycin-treated wild type cells, or ure2Delta cells, results in its prompt relocalization to the cytoplasm. Together these data identify a major new level of regulation to which Gln3 responds, and adds a new dimension to mechanistic studies of the regulation of this transcription factor.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17439949</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>08</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>282</Volume>
<Issue>25</Issue>
<PubDate>
<Year>2007</Year>
<Month>Jun</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation.</ArticleTitle>
<Pagination>
<MedlinePgn>18467-80</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Intracellular localization of Saccharomyces cerevisiae GATA family transcription activator, Gln3, is used as a downstream readout of rapamycin-inhibited Tor1,2 control of Tap42 and Sit4 activities. Gln3 is cytoplasmic in cells provided with repressive nitrogen sources such as glutamine and is nuclear in cells growing with a derepressive nitrogen source such as proline or those treated with rapamycin or methionine sulfoximine (Msx). Although gross Gln3-Myc13 phosphorylation levels in wild type cells do not correlate with nitrogen source-determined intracellular Gln3-Myc13 localization, the phosphorylation levels are markedly influenced by several environmental perturbations. Msx treatment increases Snf1-independent Gln3-Myc13 phosphorylation, whereas carbon starvation increases both Snf1-dependent and -independent Gln3-Myc13 phosphorylation. Here we demonstrate that a broad spectrum of environmental stresses (temperature, osmotic, and oxidative) increase Gln3-Myc13 phosphorylation. In parallel, these stresses elicit rapid (<5 min for NaCl) Gln3-Myc13 relocalization from the nucleus to the cytoplasm. The response of Gln3-Myc13 localization to stressful conditions can completely overwhelm its response to nitrogen source quality or inhibitor-generated disruption of the Tor1,2 signal transduction pathway. Adding NaCl to cells cultured under conditions in which Gln3-Myc13 is normally nuclear, i.e. proline-grown, nitrogen-starved, Msx-, caffeine-, and rapamycin-treated wild type cells, or ure2Delta cells, results in its prompt relocalization to the cytoplasm. Together these data identify a major new level of regulation to which Gln3 responds, and adds a new dimension to mechanistic studies of the regulation of this transcription factor.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tate</LastName>
<ForeName>Jennifer J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cooper</LastName>
<ForeName>Terrance G</ForeName>
<Initials>TG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM035642</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM-35642</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>04</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C071664">GLN3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012097">Repressor Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0RH81L854J</RegistryNumber>
<NameOfSubstance UI="D005973">Glutamine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1982-67-8</RegistryNumber>
<NameOfSubstance UI="D008717">Methionine Sulfoximine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9DLQ4CIU6V</RegistryNumber>
<NameOfSubstance UI="D011392">Proline</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005973" MajorTopicYN="N">Glutamine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008717" MajorTopicYN="N">Methionine Sulfoximine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011392" MajorTopicYN="N">Proline</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012097" MajorTopicYN="N">Repressor Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>4</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>4</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17439949</ArticleId>
<ArticleId IdType="pii">M609550200</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M609550200</ArticleId>
<ArticleId IdType="pmc">PMC2269007</ArticleId>
<ArticleId IdType="mid">NIHMS40657</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2006 May 22;580(12):2821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16684541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Heart Hosp J. 2005 Summer;3(3):182-6, 192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16106139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Aug 9;25(15):3546-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16874307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Sep;61(5):1147-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16925551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 22;281(38):28460-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16864577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 29;281(39):28546-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16864574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 20;281(42):31616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16923813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 8;281(49):37980-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17015442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 1999 Aug;12(1):35-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10554772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Jun;149(2):865-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9611198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2000 Jan;24(1):67-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10640599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Oct 6;275(40):30957-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10921924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 17;275(46):35727-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10940301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2001 Jul;265(5):801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11523797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Sep 14;276(37):34441-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Nov;8(5):1017-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 May 14;99(10):6784-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2002 May 15;290(1-2):1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12062797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2002 Aug;26(3):223-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12165425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 4;277(40):37559-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12140287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Dec;46(5):1319-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12453218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Apr 11;278(15):12826-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12562760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Nov;14(11):4342-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14551259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 12;279(11):10270-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14679193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 9;279(15):14752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14736892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 30;279(18):19294-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14970238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 3;279(36):37512-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Oct;24(19):8332-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Feb;170(2):708-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2892826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Apr 22;264(5158):566-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7909170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1996 Nov 1;6(11):1426-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8939604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Dec 15;11(24):3432-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9407035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Dec 15;11(24):3445-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9407036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Jan;19(1):537-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9858577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 May 17;18(10):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2004;38:681-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15355224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Mar;69(1):79-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15755954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2005 Apr;17(2):158-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2005 Apr 15;22(5):343-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15806612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Lipidol. 2005 Jun;16(3):317-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15891393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 22;280(29):27195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15911613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Drugs. 2005 Sep;16(8):797-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16096426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2006;38(9):1476-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16647875</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Cooper, Terrance G" sort="Cooper, Terrance G" uniqKey="Cooper T" first="Terrance G" last="Cooper">Terrance G. Cooper</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Tate, Jennifer J" sort="Tate, Jennifer J" uniqKey="Tate J" first="Jennifer J" last="Tate">Jennifer J. Tate</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001682 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001682 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17439949
   |texte=   Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17439949" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020